Precision force and position control of ionic polymer–metal composite
نویسنده
چکیده
In this paper, model-based precision force and position control of an ionic polymer metal composite (IPMC) is presented. A 23.8 mm×3.4 mm×0.16 mm IPMC strip was used as an actuator in a cantilever configuration. Open-loop force and position responses of an IPMC are not repeatable, and hence closed-loop precision control is of critical importance to ensure proper functioning, repeatability and reliability. After feedback controllers were designed and implemented with empirically obtained fourth-order plant transfer functions, the overshoot decreased from 460 to 2.8 per cent and the settling time was reduced from 37.5 to 3.22 s in force control. In position control the overshoot decreased from 333 to 20.3 per cent and the settling time was reduced from 21.5 to 2.56 s. Microscale precision force and position control capabilities of the IPMC actuator were also demonstrated experimentally. An 8 mN force resolution was achieved with a force noise of 0.5 mN r.m.s., and the position resolution was 6 mm with a position noise of 2.5 mm r.m.s. The maximum force and tip displacement achieved with the IPMC actuator under closed-loop control were 2 mN and 5 mm respectively. The IPMC actuator could follow various commanded force and position trajectories such as sinusoidal and trapezoidal position profiles, and a velocity profile with a 3 mm/s maximum velocity. A novel hybrid force and position control strategy demonstrated its utility in practical micromanipulation applications where the actuator force must be limited to prevent damaging micro-objects. Highprecision control of the IPMC at low force level proved its potential for micromanufacturing and micromanipulation applications such as robotic and biomedical microgrippers.
منابع مشابه
Control of Ionic Polymer Metal Composites
Robotic devices are traditionally actuated by hydraulic systems or electric motors. However, with the desire to make robotic systems more compact and versatile, new actuator technologies are required. In this paper, the control of ionic polymer metal composite actuators is investigated from a practical perspective. The actuator characteristics are examined though the unblocked maximum displacem...
متن کاملAdaptive Control for Ionic Polymer-Metal Composite Actuator Based on Continuous-Time Approach
This paper discusses the model reference adaptive control problem for ionic polymer-metal composite (IPMC) actuators. Firstly, a mathematical model of the IPMC actuator is constructed as a stable second order dynamical system preceded by a hysteresis representation. Then, an adaptive controller is synthesized for the IPMC actuator. The proposed control law ensures the global stability of the co...
متن کاملIntegrated IPMC/PVDF sensory actuator and its validation in feedback control
Position and/or force feedback is critical in ensuring precise and safe operation of ionic polymer–metal composite (IPMC) actuators in io/micromanipulation. In this paper the design of an integrated sensory actuator is presented, where polyvinylidene fluoride (PVDF) films re used to provide simultaneous feedback of bending and force outputs of the IPMC actuator. The design adopts differential c...
متن کاملPrepration and Characterization of Novel Ionoic Polymers to be Used as Artificial Muscles
The muscle-like technology would be of enormous advantages for biomedical applications such as medical implants and human assist devices. Ionic polymer metal composites (IPMCs) are one kind of biomimetic actuators. An ionic polymer metal composite composed from an ionomer with high ion exchange capacity that packed between two thin metal layers. In the present study we focused on the prep...
متن کاملA theoretical model for analysis of ionic polymer metal composite sensors in fluid environments
By the past two decades IPMCs have been intensively studied because of their special capabilities for actuation and sensing.This paper presents a theoretical physics based model for analyzing the behavior of IPMC sensors in fluid environments. The mechanical vibration of the IPMC strip is described by the classical Euler–Bernoulli beam theory. The model also takes in to account the physical pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004